

MAPPING MOLECULAR VARIATION IN MUNGBEAN TO ACCELERATE GENETIC GAINS

Thota Gopi Krishna¹, Anil Kumar¹, Khushboo Chandra^{1*}, Ravi Ranjan Kumar² and Divya Mahto¹

¹Department of Plant Breeding & Genetics, BAU, Sabour, Bhagalpur, Bihar, India

²Department of Molecular Biology and Genetic Engineering, BPSAC, Purnea, Bihar, India

*Corresponding author E-mail: dranilbau@gmail.com

(Date of Receiving : 30-08-2025; Date of Acceptance : 04-11-2025)

Mungbean (*Vigna radiata*) plays a critical role in sustainable agriculture due to its high protein content and nitrogen-fixing ability, which naturally improves soil fertility. Its genetic diversity is valuable for breeding programs aimed at enhancing yield, disease resistance, and resilience. A molecular diversity analysis using 30 SSR markers revealed that only seven were polymorphic, indicating limited genetic variation among the tested genotypes. The observed heterozygosity (He) and polymorphic information content (PIC) were 0.48 and 0.37, respectively. Genetic dissimilarity ranged from 0.07 to 0.30, confirming low diversity. Adzuki bean-derived SSR markers proved effective in assessing mungbean diversity. These results emphasize the necessity of using a wider range of genotypes and more primers in subsequent research. Breeding robust, high-yielding mungbean variants requires the identification of polymorphic markers. While combining genomic and phenotypic data improves breeding strategies for sustainable agriculture and food security, SSR markers aid in parental selection and genetic conservation.

Keywords : *Vigna radiata*; Molecular Diversity; Adzuki bean; PIC; SSR.

ABSTRACT

Introduction

Mungbean (*Vigna radiata* L. Wilczek) is a highly prized legume crop valued for its short growth duration and vital role in enhancing cropping intensity, particularly when used as an intercrop (Singh *et al.*, 2020). It is an excellent source of protein, vitamins, and essential minerals, making it an important component of human diets across Asia and beyond (Nair *et al.*, 2019). In addition to its nutritional importance, mungbean plays a crucial role in sustainable agriculture by fixing atmospheric nitrogen, thereby improving soil fertility and reducing dependence on synthetic fertilizers (Ali & Gupta, 2012). This ecological benefit is particularly significant for Indian agricultural systems, where input efficiency and soil health are major concerns. Globally cultivated in tropical and subtropical regions, mungbean contributes significantly to food security and cropping system diversification (Somta & Srinivas, 2007). In India, the crop covers more than 5.5 million hectares with an average productivity of 570 kg/ha, producing

nearly 3.17 million tons annually. Bihar alone accounts for 0.22 million hectares with a higher productivity of 727 kg/ha (Government of Bihar, 2024). Despite its potential, mungbean productivity is constrained by the absence of stable high-yielding cultivars, asynchronous pod maturity, and susceptibility to biotic stresses such as mungbean yellow mosaic virus (MYMV) and pod borers (Pandey *et al.*, 2018). The crop's adaptability allows cultivation in all three seasons Kharif, Rabi, and Zaid with increasing adoption in summer and spring due to its tolerance to high temperatures (Chauhan *et al.*, 2021). However, the narrowing genetic base under modern agricultural systems threatens crop resilience and long-term food security. Therefore, harnessing genetic diversity in mungbean germplasm is crucial for breeding resilient and high-yielding cultivars. DNA-based molecular markers, particularly Simple Sequence Repeats (SSRs), have proven effective in assessing genetic variation and identifying diverse parental lines for crop improvement (Somta *et al.*, 2008). The present study was undertaken to evaluate

the genetic diversity in mungbean germplasm using SSR markers, with the aim of identifying diverse and promising lines that can be utilized in breeding programs for developing high-yielding, stress-tolerant cultivars.

Materials and Methods

Plant Materials

The experiment was conducted at the Department of Plant Breeding and Genetics, Bihar Agricultural

University, Sabour (Bihar). A total of 36 mungbean genotypes, including released varieties, advanced breeding lines, and local collections (LC), were used (Table 1). These genotypes were sourced from IIPR-Kanpur, NBPGR-New Delhi, GBPUAT-Pantnagar, BHU-Varanasi, CSKHPKV-Palampur, IARI-New Delhi, and local regions of Bihar and Uttarakhand. Check varieties are denoted as (C).

Table 1: List of mungbean genotypes used in the study.

S.No.	Entry name	Source
1.	GM-99-25	IIPR, Kanpur
2.	KL-4	LC, Kashipur, Uttarakhand
3.	Banka Local Mung-5	LC, Etahari, Banka, Bihar
4.	IPM-99-125	IIPR, Kanpur
5.	IC-683	NBPGR, New Delhi
6.	GP-276	IIPR, Kanpur
7.	IPM-2-3	IIPR, Kanpur
8.	Samrat (C)	IIPR, Kanpur
9.	BRM-8-1	LC, Pantnagar, Uttarakhand
10.	Meha	IIPR, Kanpur
11.	Banka Local Mung-2	LC, Etahari, Banka, Bihar
12.	Banka Local Mung-7	LC, Simariya, Banka, Bihar
13.	Banka Local Mung-1	LC, Simariya, Banka, Bihar
14.	IC-314326	NBPGR, New Delhi
15.	IPM-409-4	IIPR, Kanpur
16.	PM-5 (C)	GBPUAT, Pantnagar, Uttarakhand
17.	DMG-1103	IIPR, Kanpur
18.	IPM-2-14	IIPR, Kanpur
19.	DMG-1105-1-2	IIPR, Kanpur
20.	IC-39403	NBPGR, New Delhi
21.	HUM-12	BHU, Varanasi
22.	IC-369233	NBPGR, New Delhi
23.	LM-249	IIPR, Kanpur
24.	HUM-16 (C)	BHU, Varanasi
25.	IC-324012	NBPGR, New Delhi
26.	BRM-1	LC, Kashipur, Uttarakhand
27.	SML-668	CSKHPKV, Palampur
28.	GG-1980	IIPR, Kanpur
29.	KL-1	LC, Kashipur, Uttarakhand
30.	LM-126	IIPR, Kanpur
31.	DMG-1105-2-2	IIPR, Kanpur
32.	Pusa Vishal (C)	IARI, New Delhi
33.	LM-3	IIPR, Kanpur
34.	IC-16033	NBPGR, New Delhi
35.	Banka Local Mung-4	LC, Simariya, Bihar
36.	IPM-205-7	IIPR, Kanpur

Where, C – Check, LC- Local Collection

DNA Extraction

Genomic DNA was isolated from 11–12-day-old seedlings using the CTAB method described by Doyle and Doyle (1990) with minor modifications. DNA quality and concentration were checked on 0.8% agarose gel and quantified using a NanoDrop spectrophotometer.

SSR Markers and PCR Amplification

A total of 30 SSR primers were used, including 20 mungbean-specific SSRs developed by Somta *et al.* (2008) and 10 adzuki bean-derived SSRs reported by Wang *et al.* (2004). These primers have been widely utilized for genetic diversity studies in *Vigna* species due to their high polymorphism and transferability.

PCR amplification was carried out in a 25 μ L reaction mixture containing:

- 50 ng template DNA,
- 1x PCR buffer (10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl₂),
- 200 μ M of each dNTP,
- 0.5 μ M of each forward and reverse primer, and
- 1 U Taq DNA polymerase (Thermo Scientific, USA).

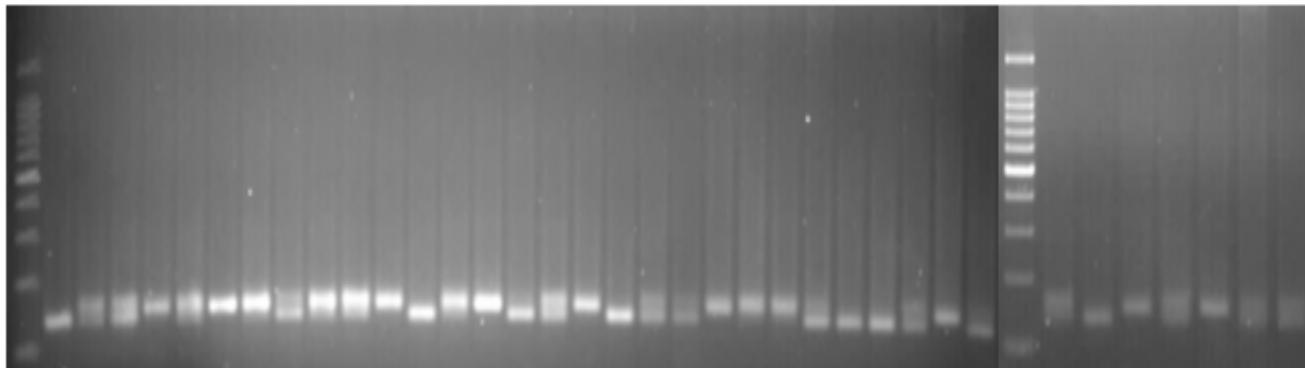
Amplification was performed in a thermal cycler (Eppendorf Mastercycler) using the following conditions:

- Initial denaturation at 94 °C for 4 min,
- 35 cycles of:
- Denaturation at 94 °C for 30 s,
- Annealing at 50–60 °C (depending on primer Tm) for 45 s,
- Extension at 72 °C for 1 min,
- Final extension at 72 °C for 7 min.

PCR products were resolved on 3% agarose gel stained with ethidium bromide and visualized under UV light.

Data Scoring and Analysis

SSR polymorphisms were scored manually based on the presence (1) or absence (0) of alleles. The binary data matrix was used to estimate genetic diversity among the genotypes using DARwin 6.0 software (Perrier & Jacquemoud-Collet, 2006). A dendrogram was constructed using the unweighted pair group method with arithmetic averages (UPGMA).

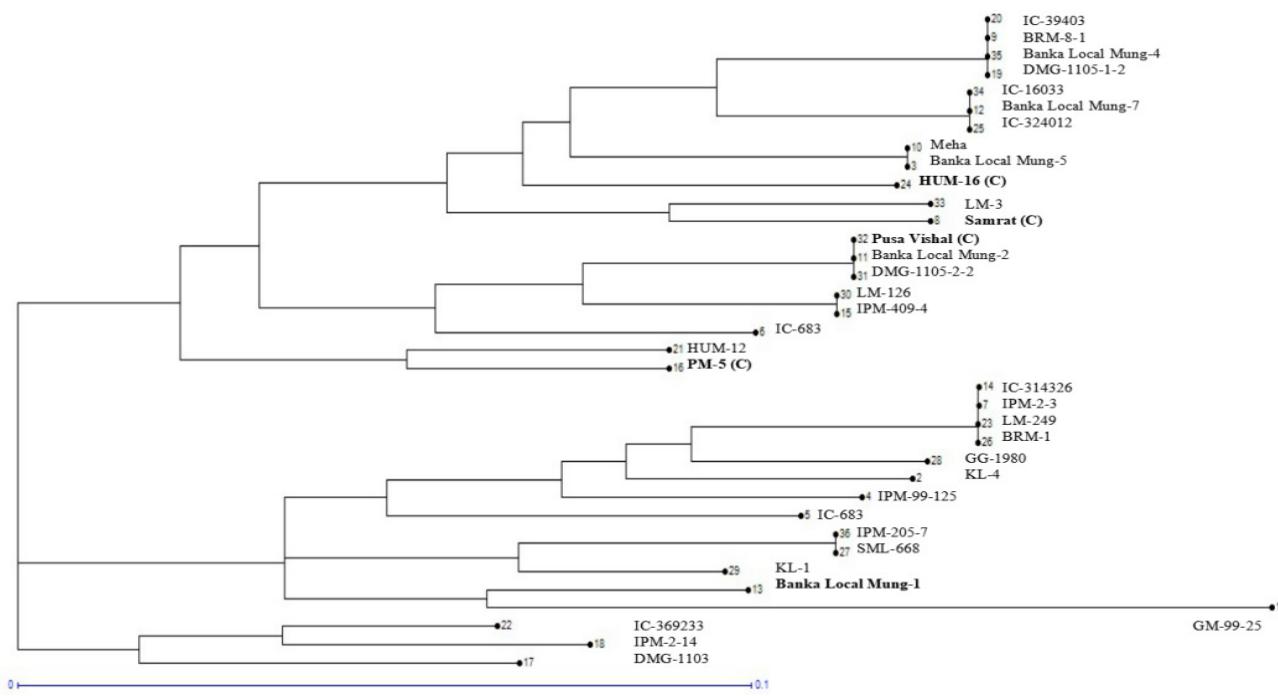

Results and Discussion

A total of 30 SSR markers were used to evaluate the genetic diversity among 36 mungbean genotypes. Of these, 7 primers were polymorphic, 16 were monomorphic, and 7 failed to amplify. The seven polymorphic primers (Table 2) revealed a total of 14 alleles, with an average of 2 alleles per primer, suggesting a relatively low level of genetic diversity within the tested germplasm. The number of alleles per marker (2) was lower than that reported in earlier studies by Lestari *et al.* (2014) and Khajudparn *et al.* (2023), who observed higher allelic numbers using larger germplasm sets. The Polymorphic Information Content (PIC) values ranged from 0.28 (CEDG006) to 0.37 (CEDAAG002), with an average of 0.33, indicating moderate informativeness of the SSR markers used (Table 2). Among these, CEDAAG002 emerged as the most informative marker for differentiating genotypes, consistent with reports of cross-transferability of adzuki bean SSRs to mungbean (Wang *et al.*, 2004). The expected heterozygosity (He) ranged from 0.34 to 0.48, averaging 0.41, indicating that the studied mungbean germplasm harbors narrow but exploitable variability. The genetic dissimilarity indices among the mungbean genotypes ranged from 0.07 to 0.30 (Fig. 1). Some genotype pairs (e.g., GM-99-25 and GP-276; Banka Local Mung-1 and Banka Local Mung-2) exhibited complete similarity (0.00), suggesting close relatedness. In contrast, the highest dissimilarity (0.30) was recorded between KL-1 and Samrat, indicating their potential utility as diverse parental combinations in breeding

Table 2 : Details of polymorphic SSR markers studied in the experiment

Sl. No.	Primer	Repeat motif	Forward sequence (5'-3')	Reverse sequence (5'-3')	Annealing Temp (°C)	No. of alleles	He	PIC	Reference
1	MAB128079	(GA) ₁₈	AGCTTGTGCT TCTGTCTGTG	GACACCAACAT GGGAGAAAGT	55	2	0.38	0.31	Somta <i>et al.</i> , 2008
2	MBM-00201	(CT) ₁₆	CCTTCCTTGTG GTTCTTCTC	ATGTGCTTGTG GTGTGATGT	56	2	0.48	0.36	Somta <i>et al.</i> , 2008
3	MBM-03131	(AT) ₁₃	GCTGGATGAG TGAACTTGAG	TGTGGGTAGTT GGGAGTAGG	55	2	0.38	0.31	Somta <i>et al.</i> , 2008

4	CEDGAG001	(GA) ₁₅	TGGCTCTTCTT CTCCACTTT	CGGGTAGTCAA GTTGGAGAT	54	2	0.40	0.32	Wang <i>et al.</i> , 2004
5	CEDAAG002	(AAG) ₁₂	CCTTCCATGTC TTCTGCTCT	GAGTGGAAAGGT GGTAGTGGA	55	2	0.48	0.37	Wang <i>et al.</i> , 2004
6	CEDG006	(GA) ₁₀	CCAAGTCCCT TGTCTCTTCT	GAGTGAGCCTG TTTGAATGA	53	2	0.34	0.28	Wang <i>et al.</i> , 2004
7	CEDG008	(GA) ₁₂	GTTCAGTG TTGGTTGTG	AGATTGTTGGG TGTTGTTGG	54	2	0.42	0.33	Wang <i>et al.</i> , 2004



Note: **L**- Ladder, **1**- GM-99-25, **2**- KL-4, **3**- Banka Local Mung-5, **4**- IPM-99-125, **5**- IC-683, **6**- GP-276, **7**- IPM-2-3, **8**- Samrat (C), **9**- BRM-8-1, **10**- Meha, **11**- Banka Local Mung-2, **12**- Banka Local Mung-7, **13**- Banka Local Mung-1, **14**- IC-314326, **15**- IPM-409-4, **16**- PM-5 (C), **17**- DMG-1103, **18**- IPM-2-14, **19**- DMG-1105-1-2, **20**- IC-39403, **21**- HUM-12, **22**- IC-369233, **23**- LM-249, **24**- HUM-16 (C), **25**- IC-324012, **26**- BRM-1, **27**- SML-668, **28**- GG-1980, **29**- KL-1, **30**- LM-126, **31**- DMG-1105-2-2, **32**- Pusa Vishal (C), **33**- LM-3, **34**- IC-16033, **35**- Banka Local Mung-4, **36**- IPM-205-7

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
2 0.22																																		
3 0.29 0.24																																		
4 0.21 0.09 0.24																																		
5 0.21 0.13 0.23 0.12																																		
6 0.27 0.22 0.16 0.22 0.21																																		
7 0.23 0.09 0.25 0.10 0.14 0.23																																		
8 0.30 0.25 0.13 0.24 0.23 0.16 0.26																																		
9 0.30 0.25 0.10 0.25 0.24 0.17 0.26 0.14																																		
10 0.28 0.24 0.00 0.24 0.23 0.16 0.25 0.13 0.10																																		
11 0.29 0.24 0.17 0.23 0.22 0.10 0.24 0.17 0.18 0.17																																		
12 0.30 0.25 0.10 0.24 0.24 0.16 0.26 0.14 0.07 0.10 0.18																																		
13 0.14 0.15 0.22 0.14 0.13 0.20 0.16 0.22 0.23 0.22 0.21 0.23																																		
14 0.23 0.09 0.25 0.10 0.14 0.23 0.00 0.26 0.26 0.25 0.24 0.26 0.16																																		
15 0.28 0.23 0.17 0.23 0.22 0.10 0.24 0.17 0.18 0.17 0.07 0.18 0.21 0.24																																		
16 0.26 0.21 0.17 0.20 0.20 0.15 0.22 0.17 0.18 0.17 0.16 0.17 0.19 0.22 0.16																																		
17 0.24 0.19 0.19 0.18 0.18 0.17 0.20 0.19 0.20 0.19 0.18 0.20 0.17 0.20 0.16																																		
18 0.25 0.20 0.20 0.19 0.18 0.18 0.21 0.20 0.21 0.20 0.19 0.21 0.18 0.21 0.19 0.17 0.11																																		
19 0.30 0.25 0.10 0.25 0.24 0.17 0.26 0.14 0.00 0.10 0.18 0.07 0.23 0.26 0.18 0.18 0.20 0.21																																		
20 0.30 0.25 0.10 0.25 0.24 0.17 0.26 0.14 0.00 0.10 0.18 0.07 0.23 0.26 0.18 0.18 0.20 0.21 0.00																																		
21 0.26 0.21 0.17 0.20 0.20 0.15 0.22 0.17 0.18 0.17 0.16 0.17 0.19 0.22 0.16 0.07 0.16 0.17 0.18 0.18																																		
22 0.24 0.19 0.19 0.18 0.17 0.17 0.20 0.19 0.20 0.19 0.18 0.20 0.17 0.20 0.18 0.15 0.16 0.10 0.07 0.20 0.20 0.15																																		
23 0.23 0.09 0.25 0.16 0.14 0.23 0.00 0.26 0.26 0.25 0.24 0.26 0.16 0.00 0.24 0.20 0.22 0.20 0.26 0.22 0.20 0.20																																		
24 0.29 0.24 0.10 0.24 0.23 0.15 0.25 0.13 0.11 0.10 0.17 0.11 0.22 0.25 0.25 0.17 0.16 0.19 0.20 0.11 0.11 0.16 0.19 0.25																																		
25 0.30 0.25 0.10 0.24 0.24 0.16 0.26 0.14 0.07 0.10 0.18 0.00 0.23 0.26 0.18 0.17 0.20 0.21 0.07 0.07 0.17 0.20 0.26 0.11																																		
26 0.23 0.09 0.25 0.10 0.14 0.23 0.00 0.26 0.26 0.25 0.24 0.26 0.16 0.00 0.24 0.22 0.20 0.21 0.26 0.22 0.20 0.20 0.00 0.25 0.26																																		
27 0.21 0.16 0.23 0.15 0.15 0.21 0.17 0.24 0.24 0.23 0.23 0.24 0.14 0.17 0.22 0.20 0.18 0.19 0.19 0.18 0.17 0.23 0.24 0.17																																		
28 0.22 0.08 0.25 0.09 0.13 0.22 0.07 0.25 0.26 0.25 0.24 0.25 0.15 0.07 0.24 0.21 0.19 0.20 0.26 0.26 0.21 0.19 0.07 0.24 0.25 0.07 0.16																																		
29 0.19 0.15 0.22 0.14 0.13 0.20 0.15 0.22 0.21 0.23 0.15 0.12 0.15 0.11 0.21 0.16 0.17 0.22 0.23 0.19 0.13 0.16 0.15 0.22 0.23 0.15 0.07 0.15																																		
30 0.28 0.23 0.17 0.23 0.22 0.10 0.24 0.17 0.18 0.17 0.07 0.18 0.21 0.24 0.00 0.16 0.18 0.19 0.18 0.18 0.16 0.18 0.24 0.17 0.18 0.24 0.22 0.24 0.21																																		
31 0.29 0.24 0.17 0.23 0.22 0.10 0.24 0.17 0.18 0.17 0.00 0.18 0.21 0.24 0.07 0.16 0.18 0.19 0.18 0.18 0.16 0.18 0.24 0.17 0.18 0.24 0.23 0.24 0.21 0.07																																		
32 0.29 0.17 0.23 0.22 0.10 0.24 0.17 0.18 0.17 0.00 0.18 0.24 0.20 0.07 0.16 0.18 0.19 0.18 0.18 0.16 0.18 0.24 0.17 0.18 0.24 0.23 0.24 0.21 0.07 0.00																																		
33 0.30 0.25 0.13 0.24 0.23 0.16 0.26 0.07 0.14 0.13 0.17 0.14 0.22 0.26 0.17 0.17 0.19 0.20 0.14 0.14 0.17 0.19 0.26 0.24 0.25 0.22 0.17 0.17 0.17																																		
34 0.30 0.25 0.10 0.24 0.24 0.16 0.26 0.14 0.07 0.10 0.18 0.00 0.23 0.26 0.18 0.17 0.20 0.21 0.07 0.07 0.17 0.20 0.26 0.11 0.00 0.26 0.24 0.25 0.23 0.18 0.18 0.18 0.14 0.07																																		
35 0.30 0.25 0.10 0.25 0.24 0.17 0.26 0.14 0.00 0.10 0.18 0.07 0.23 0.26 0.18 0.18 0.20 0.21 0.00 0.00 0.18 0.20 0.26 0.11 0.07 0.26 0.24 0.26 0.23 0.18 0.18 0.18 0.14 0.07																																		
36 0.21 0.16 0.23 0.15 0.15 0.21 0.17 0.24 0.24 0.23 0.23 0.24 0.14 0.17 0.22 0.20 0.18 0.19 0.24 0.24 0.20 0.18 0.17 0.23 0.24 0.17 0.00 0.16 0.07 0.22 0.23 0.24 0.24 0.24																																		

1- GM-99-25, **2**- KL-4, **3**- Banka Local Mung-5, **4**- IPM-99-125, **5**- IC-683, **6**- GP-276, **7**- IPM-2-3, **8**- Samrat (C), **9**- BRM-8-1, **10**- Meha, **11**- Banka Local Mung-2, **12**- Banka Local Mung-7, **13**- Banka Local Mung-1, **14**- IC-314326, **15**- IPM-409-4, **16**- PM-5 (C), **17**- DMG-1103, **18**- IPM-2-14, **19**- DMG-1105-1-2, **20**- IC-39403, **21**- HUM-12, **22**- IC-369233, **23**- LM-249, **24**- HUM-16 (C), **25**- IC-324012, **26**- BRM-1, **27**- SML-668, **28**- GG-1980, **29**- KL-1, **30**- LM-126, **31**- DMG-1105-2-2, **32**- Pusa Vishal (C), **33**- LM-3, **34**- IC-16033, **35**- Banka Local Mung-4, **36**- IPM-205-7

Fig. 1: Dissimilarity matrix between 36 genotypes of mungbean (DARwin 6.0 program)

Fig. 2: Clustering of mungbean genotypes by UPGMA using molecular data

Interestingly, the molecular clustering pattern did not strongly correspond to geographical origin, as also observed in mungbean by Molla *et al.* (2016) and Rohilla *et al.* (2022). This implies that mungbean breeding and seed exchange have facilitated genetic mixing across regions. The SSR primers used in this study were sourced from both mungbean-specific SSRs (Somta *et al.*, 2008) and adzuki bean-derived SSRs (Wang *et al.*, 2004). The choice of adzuki bean primers was based on their proven cross-transferability to mungbean due to the close phylogenetic relationship within the *Vigna* genus (Somta & Srinivas, 2007). In this study, 4 of the 10 adzuki bean-derived markers were polymorphic, confirming their utility for diversity studies in mungbean. These results collectively demonstrate that while the studied mungbean germplasm exhibits narrow molecular diversity, the identified polymorphic SSRs can serve as valuable tools for parent selection in breeding programs. Expanding germplasm coverage and integrating additional cross-transferable markers could provide a more comprehensive view of mungbean genetic diversity, aiding in the development of improved cultivars with higher yield potential and stress resilience.

Conclusion and Future Research

The present study highlights the genetic diversity available among mungbean genotypes, underscoring its potential for varietal improvement. However, the genetic base of mungbean remains relatively narrow

compared to other pulses, necessitating the incorporation of wild relatives and novel germplasm. Future research should emphasize integrating conventional breeding with molecular and genomic tools for trait-specific improvement. The use of genomic selection, coupled with high-throughput phenotyping and advanced bioinformatics, will further accelerate breeding efficiency. Moreover, research should also focus on enhancing traits linked with sustainability such as resource-use efficiency, resilience to climate variability, and nutritional fortification to ensure mungbean remains a key crop for food, nutrition, and livelihood security in the future.

Acknowledgement

We would like to express our sincere gratitude to Bihar Agricultural University, Sabour, Bhagalpur, Bihar for providing the necessary resources and facilities in the completion of this research.

Conflict of Interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- Ali, M., & Gupta, S. (2012). Carrying capacity of Indian agriculture: Pulse crops. *Current Science*, **102**(6), 874–881.
- Chauhan, Y., Wallace, D. H., Johansen, C., & Singh, D. P. (2021). Physiological basis of mungbean yield improvement. *Field Crops Research*, **124**(2), 195–206.

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. *Focus*, 12, 13–15.

Government of Bihar. (2024). *Economic survey 2023–24*. Finance Department, Government of Bihar.

Gupta, S. K., Bansal, R., & Gopalakrishna, T. (2014). Development and characterization of genic SSR markers for mungbean (*Vigna radiata* (L.) Wilczek). *Euphytica*, 195(2), 245–258.

Jena, B., Panigrahi, K. K., Baisakh, B., & Das, T. R. (2015). Genetic diversity as assessed by agronomical traits and molecular markers in local land races of greengram (*Vigna radiata* L.) under rice fallow condition. *Molecular Plant Breeding*, 6(8), 1–7.

Kaur, G., Joshi, A., Jain, D., Choudhary, R., & Vyas, D. (2016). Diversity analysis of greengram (*Vigna radiata* (L.) Wilczek) through morphological and molecular markers. *Turkish Journal of Agriculture and Forestry*, 40(2), 229–240.

Khajudparn, P., Neatrphan, S., Kaga, A., Tomooka, N., & Somta, P. (2023). Assessment of genetic diversity and population structure in mungbean (*Vigna radiata*) using SNP markers derived from genotyping-by-sequencing. *Genetic Resources and Crop Evolution*, 70, 689–701. <https://doi.org/10.1007/s10722-023-01452-6>

Krishna, T. G., Kumar, A., & Adan, F. (2020). Morphological diversity for yield and its component traits in mungbean [*Vigna radiata* (L.) Wilczek]. *Current Journal of Applied Science and Technology*, 39(4), 34–41.

Kumar, A. (2019). Genetic diversity of yield attributing components and seed yield in lentil (*Lens culinaris* Medik.). *Current Journal of Applied Science and Technology*, 33(2), 1–6.

Kumar, M., & Bhat, S. (2017). Molecular diversity studies in greengram genotypes differing for powdery mildew resistance. *Journal of Farm Sciences*, 30(4), 503–509.

Kumar, V., Dikshit, H. K., Jain, N., Kumari, J., Singh, D., Singh, A., Tak, R., & Sharma, T. R. (2012). Genetic diversity in mungbean [*Vigna radiata* (L.) Wilczek] and related *Vigna* spp. detected by ISSR, URP and SSR markers. *Indian Journal of Genetics and Plant Breeding*, 72(3), 318–324.

Lavanya, G. R., Srivastava, J., & Ranade, S. A. (2008). Molecular assessment of genetic diversity in mungbean germplasm. *Journal of Genetics*, 87(1), 65.

Lestari, P., Kim, S. K., Kang, Y. J., Dewi, N., & Lee, S. H. (2014). Genetic diversity of mungbean (*Vigna radiata* L.) germplasm in Indonesia. *Plant Genetic Resources*, 12(S1), S91–S94.

Mahalanobis, P. C. (1928). A statistical study at Chinese head measurement. *Journal of the Asiatic Society of Bengal*, 25(3), 301–377.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. *National Institute of Science of India*.

Markam, N. K., Nair, S. K., Saxena, R. R., & Nanda, H. C. (2018). Assessment of genetic diversity using SSR marker in mungbean [*Vigna radiata* (L.) Wilczek] genotypes. *Journal of Pharmacognosy and Phytochemistry*, 7(2), 2750–2754.

Mathivathana, M. K., Jagadeeshselvam, N., Madhumitha, B., Karthikeyan, A., Pandiyan, M., Karthikeyan, G., Vanniarajan, C., Raveendran, M., Senthil, N., & Sudha, M. (2018). Screening and identification of SSR markers for genetic diversity in mungbean (*Vigna radiata* (L.) Wilczek). *International Journal of Current Microbiology and Applied Sciences*, 7(4), 789–793.

Molla, M. R., Ahmed, I., Rohman, M. M., Hossain, M. A., & Chowdhury, M. A. (2016). Genetic diversity analysis and DNA fingerprinting of mungbean (*Vigna radiata* L.) genotypes using SSR markers. *Journal of Plant Sciences*, 4(6), 153.

Nair, R. M., Yang, R. Y., Easdown, W. J., Thavarajah, D., Thavarajah, P., Hughes, J. d'A., & Keatinge, J. D. H. (2019). Biofortification of mungbean (*Vigna radiata*) as a whole food for improved nutrition and health. *Euphytica*, 210(1), 1–16.

Palaniappan, J., & Murugaiah, S. (2012). Genetic diversity as assessed by morphological and microsatellite markers in greengram (*Vigna radiata* L.). *African Journal of Biotechnology*, 11(84), 15091–15097.

Pandey, A. K., Burlakoti, R. R., Kenyon, L., & Nair, R. M. (2018). Perspectives and challenges for sustainable management of fungal and bacterial diseases in mungbean and urdbean. *Frontiers in Plant Science*, 9, 1346.

Pandiyan, M., Senthil, N., Anitha, M., Raveendran, M., Sudha, M., Latha, M., Nagarajan, P., Tomooka, N., & Balasubramanian, P. (2012). Diversity analysis of *Vigna* sp. through morphological markers. *Wadpecker Journal of Agricultural Research*, 1(8), 335–340.

Perrier, X., & Jacquemoud-Collet, J. P. (2006). *DARwin* software. CIRAD. <http://darwin.cirad.fr/>

Perrier, X., Flori, A., & Bonnot, F. (2003). Data analysis methods. In P. Hamon, M. Seguin, X. Perrier, & J. C. Glaszmann (Eds.), *Genetic diversity of cultivated tropical plants* (pp. 43–76). Enfield.

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. *Molecular Breeding*, 2, 225–238.

Rao, C. R. (1952). *Advanced statistical methods in biometric research*. Macmillan.

Rohilla, V., Bains, T. S., Yadav, M., & Singh, D. (2022). Genetic diversity analysis in mungbean [*Vigna radiata* (L.) Wilczek] using SSR markers. *Legume Research*, 45(9), 1155–1160. <https://doi.org/10.18805/LR-6247>

Sahu, H., Singh, S., Amadabade, J., & Barh, A. (2014). Genetic divergence study in advanced breeding lines of mungbean in Tarai region. *Electronic Journal of Plant Breeding*, 5(4), 657–663.

Sanghani, J. M., Golakiya, B. A., Dhedhi, K. K., & Patel, S. V. (2015). Molecular characterization of mungbean (*Vigna radiata* L.) genotypes through RAPD, ISSR and SSR markers. *Legume Research*, 38(4), 452–456.

Singh, D. P., Singh, B. B., & Ramakrishnan, S. (2020). Role of short-duration mungbean in rice–wheat cropping system. *Indian Journal of Genetics and Plant Breeding*, 80(2), 111–119.

Singh, S. K., Lavanya, G. R., Bhat, K. V., Babu, G. S., Arya, L., Verma, M., Hussain, Z., Roy, S., Rathi, R. S., Misra, A. K. (2012). Microsatellite markers revealed genetic diversity in mungbean mutant lines. *Indian Journal of Hill Farming*, 25(1), 38–43.

Somta, P., & Srinives, P. (2007). Genome research in mungbean (*Vigna radiata*) and black gram (*V. mungo*). *ScienceAsia*, 33(1), 69–74.

Somta, P., Musch, W., Kongsamai, B., Chanprame, S., Nakasathien, S., Toojinda, T., Sorajapinun, W., Seehalak,

W., Tragoonrung, S., & Srinives, P. (2008). New microsatellite markers isolated from mungbean (*Vigna radiata*) and their application in diversity studies and gene mapping. *BMC Genetics*, **9**(1), 6.

Somta, P., Sommanas, W., & Srinives, P. (2009). Molecular diversity assessment of AVRDC-The World Vegetable Center elite-parental mungbeans. *Breeding Science*, **59**(2), 149–157.

Suman, S., Rani, B., Sharma, V. K., Kumar, H., & Shahi, V. K. (2018). SSR marker-based profiling and diversity analysis of mungbean [*Vigna radiata* (L.) Wilczek] genotypes. *Legume Research*.

Tangphatsornruang, S., Somta, P., Uthaipaisanwong, P., Chanprasert, J., Sangsrakru, D., Seehalak, W., Sommanas, W., Tragoonrung, S., & Srinives, P. (2009). Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (*Vigna radiata* (L.) Wilczek). *BMC Plant Biology*, **9**(1), 137.

Tiwari, A. K., & Shihhare, A. K. (2016). *Pulses in India: Retrospect and prospects*. Directorate of Pulses Development, Ministry of Agriculture & Farmers Welfare.

Tripathy, S. K., Nayak, P. K., Lenka, D., Swain, D., Baisakh, B., Mohanty, P., Senapati, N., Dash, G. B., Dash, S., Mohapatra, P. M., & Pradhan, K. (2016). Morphological diversity of local land races and wild forms of mungbean. *Legume Research*, **39**(4), 485–493.

Vavilov, N. I. (1951). *The origin, variation, immunity and breeding of cultivated plants*. LWW.

Versha, R., Yadav, R. K., Poonia, A., Sheoran, R., Kumari, G., Shanmugavadivel, P. S., & Pratap, A. (2022). Association mapping for yield attributing traits and yellow mosaic disease resistance in mungbean [*Vigna radiata* (L.) Wilczek]. *Frontiers in Plant Science*, **12**, 749439. <https://doi.org/10.3389/fpls.2021.749439>

Vyas, D., Joshi, A., & Kedar, O. P. (2018). Genetic diversity analysis of black gram (*Vigna mungo* L.). *Journal of Pharmacognosy and Phytochemistry*, **7**(3), 2535–2538.

Wang, X. W., Kaga, A., Tomooka, N., & Vaughan, D. A. (2004). The development of SSR markers in azuki bean (*Vigna angularis*) and their application to other *Vigna* species: The potential for mapping. *Theoretical and Applied Genetics*, **109**(2), 352–360.